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1. INTRODUCTION

For f a function continuous on the closed unit disk and analytic in the
interior, let

and

w(8,f) = sup{11(Z1) - 1(z2)1 : I Z1 - z21 ~ 8, I z11 = I z21 = 1}

denote, respectively, the modulus of continuity off on the closed unit disk
and the modulus of continuity of the restriction offto the boundary {I z I= 1}.
We consider here the question of determining the relationship of w(8, f)
and w(8, f). Clearly, one has w(8, f) ~ w(8, f), and we are concerned here
with the extent to which the reverse inequality holds. For certain measures
of growth, w(8,j) and w(8,f) are the same. For example, if (X is given
(0 < (X ~ 1) and if w(8,f) ~ 8", then w(8,j) ~ 8" (see Theorem 2.2).
However, it is not true in general that w(8, f) = w(8, f) (see Section 4 for an
example). Nevertheless, we do have the following result.

The disk algebra A denotes the class of functions f that are continuous
on 1z I ~ I and analytic in I z I < 1.
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THEOREM 1.1. There exists a constant e > 0 such that

w(8, f) ~ ew(o, f)

for all °> 0 and all functions fE A.

The example of Section 4 shows that e > I, while the proof of Theorem 1.1
(see Section 2) shows that we may take e ~ 3. For contrast we state the
following known result for harmonic functions.

THEOREM 1.1'. There exists a constant e such that

w(o, f) :'( C[log(l/o)] w(o, f)

for 0 < °~ t, and all (complex-valued) functions f that are harmonic for
I z I < 1 and continuous for [ z I :'( 1.

At the end of Section 2 we say a few words about the proof of this result;
in Section 4 we point out that the factor log(l/8) is best possible.

As noted above, the constant e in Theorem 1.1 is larger than 1. It is
interesting to note that even in the small, the constant e is larger than I;
that is, there exists a function f E A with

I· w(o,f) 1
lIl}->~UP w(o, f) > .

We give an example of such a function in Section 4.
The problem of determining the relationship between w(o, f) and w(o, f)

arises naturally in approximation theory. In particular, Theorem 1.1 answers
a question posed by Sewell [7, p. 32]. The authors were led to the same
question in the study of Mergelyan sets (see Section 3).

DEFINITION. A subset F of the open unit disk is called a Mergelyan
set if and only if every function g that is analytic on the open unit disk and
uniformly continuous on F can be uniformly approximated by polynomials
on all sets of the form F U {! z I :'( r} for each 0 < r < 1.

In Section 3, we give some basic facts about Mergelyan sets. In particular,
Theorem 1.1 allows us to prove that each set F that contains a bullseye,
i.e., a set of the form U{I z I = rn}, where rn increases to 1, is a Mergelyan
set (proposition 3.5). An example is given that shows that the union of two
Mergelyan sets need not be a Mergelyan set; another example shows that
the intersection of two Mergelyan sets need not be a Mergelyan set. Since
an earlier version of this paper was prepared, Stray [8] has given a charac
terization of Mergelyan sets.
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It is of interest to study the relationship of w(o, 1) and w(o,1) for domains
other than the unit disk. If G is an open set and f is a continuous bounded
function on G-, the closure of G in the finite plane, then we can define

w(o,/; G) = sup{[ !(Zl) - !(Z2) [ : Zl , Z2 E G-, I Zl - Z2 I ~ o}
and

w(o,/; G) = sup{! !(Zl) - !(Z2)[ : Zl , Z2 E aG, I Zl - Z2 [ ~ o}.

As before, we clearly have w ~ w. The analogue of Theorem 1.1 holds to
the following extent. Let 1>(0) be a continuous increasing function with
1>(0) = 0 and 1>(01 + (2) ~ 1>(01) + 1>(02).

THEOREM 1.2. If G is simply connected, and if f is continuous and
bounded on G- and analytic in G, then

w(o,f; G) ~ 1>(0) implies w(o, f; G) ~ C1>(o)

where C is an absolute constant independent of G andf

For arbitrary domains in the plane an extensive study, of when results
like Theorem 1.2 hold has been made by Tamrazov [9], who gives conditions
in terms of the capacity of the complement of G near boundary points. As
far as we can determine the discoveries of theorems relating wand w by
ourselves and Tamrazov occurred almost simultaneously [5]. However, the
methods are different. While the results presented here are not as complete
as those of [9], the proofs are quite straightforward and, for a large class of
domains, depend only on simple versions of the maximum principle. In
particular, in Section 2, we give an elegant proof of Theorem 1.1 due to
Robert Kaufman. We thank Prof. Kaufman for permission to reproduce
his argument here.

We also thank Prof. L. Carleson for his comments on an earlier version
of this manuscript. Most of the arguments in Section 2 are based on an idea
he suggested, and are much simpler than our original arguments.

In Section 2, the main positive results relating w(o,1) and w(o,1) are
presented. In Section 3, we discuss Mergelyan sets and some of their
properties, and in Section 4 some examples showing that C > 1 are given.

2. THE MODULUS OF CONTINUITY

We begin with Kaufman's proof of Theorem 1.1.

Proof of Theorem 1.1. Let f be continuous for I z [ ~ 1 and analytic for
I z I < 1. For 0 < 0 ~ 71"/2, set

1 f8g(z) = g(z, 0) = 28 !(zeit
) dt.

-8
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Then g, g' are analytic for 1z I < I, continuous for 1z I ::( 1, and have the
following properties.

I g(z) - fez)! ::( w(8, f),

1g'(z)1 ::( ;8 w(2 sin 8, f),

Izl::(l,

Izi::(l.

(2.1)

(2.2)

For, from the maximum principle it suffices to prove (2.1) and (2.2) when
I z 1 = I. Further, 1g(ei9) - f(eiO)] = 1(1/(28» I~~ {f(eiI9H» - f(ei9)} dt 1 ::(
w(1 ei~ - 1 I, f) = w(2sin(8/2), f) ::( w(8, f), which proves (2.1). Similarly,
Ig'(ei9)! = 1(0/88) g(ei8)1 = 0/(28»1 f(ei(o+~» - f(ei(8-8l)\ ::( 0/(28»w(1 ei~ 
riB I, f) = (1/(28» w(2 sin 0, f).

Then writingf = (f - g) + g, we have from (2.1) and (2.2) that w(8,f) ::(
w(8,! - g) + w(8, g) ::( 2 sup{1 fez) - g(z)[ : 1z I ::( I} + 8 sup{1 g'(z)1 :
1 z 1 ::( I} ::( 2w(D, f) + lw(2 sin 8, f). However, it is easy to check that
w(2 sin 0, f) ::( 2w(D, f), so we have

w(8, f) ::( 3w(8, f) for 0::( 8 ::( 7T/2,

and Theorem 1.1 follows.
To begin the study of w(8, f) on more general domains, we give a simple

lemma on analytic functions.

LEMMA 2.1. Let G be an open set in the plane and let u be a bounded,
continuous function in G- which is analytic in G. Then

sup{1 U(Z1) - U(Z2) 1: Z1 , Z2 E G-, 1Z1 - Z2 I ::( D}

= sup{1 U(Z1) - U(Z2) I : Z1 E oG, Z2 E G-, 1Z1 - Z2 I ::( 8}. (2.3)

If G is bounded, the supremum in (2.3) can be replaced by maximum.

Proof Let A, B denote, respectively, the left and right-hand sides of (2.3).
Clearly A ~ B. To prove the other inequality, let E > 0 and choose Z1 ,

Z2 E G- with [U(Z1) - U(Z2) I > A-E. If Z1 or Z2 E oG, then B > A-E.
Thus, assume Z1' Z2 E G. Let b = Z2 - Z1' Then the function F(z) =
u(z + b) - u(z) is bounded and continuous in Gb- and analytic in Gb ,

where Gb = {z : z E G and z + bEG} = G n (G - b). Since F is bounded,
we have

1 F(z)] ::( sup{1 F(w)] : WE 8Gb , W 7'= oo}

for all z E Gb • But I F(z1) 1> A - E, and the result fol1ows.
Note that the supremum in (2.3) can sometimes be attained for pairs

of points Z1 , Z2 both of which are inside of G. This happens, for example,
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for the analytic function u(z) = z. The lemma only asserts that among the
pairs for which the supremum is attained, there must exist one that meets
the boundary.

Hardy and Littlewood [4, p. 427] proved the following result. If fE A
(the disk algebra) and if iiJ(o,f) ~ 0", then w(o,f) ~ co".

This result was improved by Sewell [7, Theorem 1.2.7, p. 17], who showed
that we may take c = 1. We give a short proof here based on a different idea.
Sewell also extended the result to arbitrary Jordan domains.

THEOREM 2.2. LetfE A. Thenfor °< ex ~ 1,

(2.4)

Proof Fix a. The result is trivial if the right side of (2.4) is infinite,
so without loss of generality we may assume that it is 1. That is, we have

I fez) - f(w)1 ~ I z - w I" (I z I = 1, I wi = 1). (2.5)

Now fix O. By Lemma 2.1 there are points Zl' Z2' with at least one on the
boundary (we assume that I Z2 1 = 1) for which w(o, f) = I f(zl) - f(z2)1.
We must show that If(zl) - f(z2)1 ~ I Zl - Z2 \". This follows from (2.3) if
I Zl I = 1, so we assume that Zl I < 1.

Let c/>(z) = Ij(z - Z2)" (any branch). Then c/> is analytic for I Z I < 1 and
c/> E HP (p < l/ex) (see [2, Section 4.6, Lemma, p. 65]). Hence, the function
g(z) = [fez) - f(z2)] c/>(z) is also in HP. Further, g is continuous onto the
boundary except perhaps at z = Z2' On the boundary we have by (2.5):

I g(z) I = 1fez) - f(z2) I :S: 1
I z - Z2/" """

Since g E HP and Ig I ~ 1 almost everywhere on the boundary it follows
that Ig(z) I ~ 1 for I z I < 1 (see [2, Theorem 2.11, p. 28]). In particular,
Ig(Zl)I ~ 1, which completes the proof.

Since the constant C of Theorem 1.1 is greater than 1, it seems unlikely
that Theorem 1.1 can be deduced from the maximum principle.

One could prove Theorem 2.2 without recourse to HP theory by invoking
a Phragmen-LindelOf theorem. The function g(z) is analytic in the unit
disk, bounded by 1 on the boundary except at Z2 , and does not grow too
fast in the interior as we approach Z2' Hence, it is bounded by 1 in the
whole disk. (See [10, Section 5.61] for the corresponding Phragmen-Lindelof
theorem in a half-plane.)
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We now indicate an alternative approach to this theorem. By the open
polydisk in (:2 we mean the set {(z, w) : Iz I < I, I wi < I}. By the dis
tinguished boundary we mean the set {I z I = I, 1w 1 = I}. Assuming the
hypotheses of Theorem 2.2 let

F(z w) = log 1fez) - few)!
, I z - w I~

= log If(z) - few) 1+ (1 - rY) log i z - Ii' '.z- W ,I

Then F is plurisubharmonic in the open polydisk, continuous on the closed
polydisk except for the subset of the distinguished boundary where z = w.
Further, F:S:;; ex log ell z - w I in the open polydisk, and F:S:;; 0 on the dis
tinguished boundary, except where z = w. Consequently, the family of
functions Fr+(ei8, eicb) = F+(rei8, reicb), where F+ = max(F, 0), is a uniformly
integrable family, and F :s:;; 0 in the open polydisk follows from an extended
version of the maximum principle [6, Theorem 3.2.4 (vi), p. 42].

In the remainder of this section we give the proof of theorems analogous
to Theorem 1.1 but for more general domains. For G a domain in the plane,
let A(G-) denote the algebra of bounded continuous functions on G-, the
closure of G in the finite plane, that are continuous in G- and analytic in G.
ForfE A(G-), let

w(8,f; G) = sup{1 f(zl) - f(z2) 1 : Zl , Z2 E G-, 1Zl - Z2 1 :s:;; 8} (2.6)

w(8,f; G) = sup{1 f(zl) - f(z2) [ : Zl , Z2 E 8G, I Zl - Z2 I :s:;; 8}. (2.7)

Further, if z E G, then let '(z) denote a point of the boundary of G with

1z - '(z) 1 = min{j z - , I : 'E 8G}.

LEMMA 2.3. IffE A(G-), then

w(8,f; G) :s:;; w(28,f; G) + sup{1 fez) - fmz))1 : z E G, 1 z - '(z) 1 :s:;; 8}.

Proof. Let E > O. By Lemma 2.1 we can find Zl E 8G, z E G with
I f(zl) - f(z) 1 ;;? w(8,f; G) - E, and 1Zl - z I ~ 8. Then 1'(z) - z I ~ 8 so
1Zl - '(z) 1 ~ 28 and

w(8,f; G) ~ ! f(zl) - f(z) 1 + E ~ 1 f(zl) - fmz))1 + I fez) - fa(z)1 + E

~ w(28, j) + E + I f(z) - fa(z))I·

Since E > 0 was arbitrary, the lemma follows.
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From Lemma 2.3, we see that the only problem in relating w(o, f) and
w(o,f) is to estimate the term I fez) - f(~(z))1 when z E G. For nice domains,
this is not difficult to do. To see this, fix a point ~ E 8G. Then define u(z) =
log I fez) - fml·

LEMMA 2.4. For ~ E 8G, fE A(G), u is a subharmonic function on G and
we have the inequalities

u(z) :( log w(20,/; G),

u(z) :( log w(Ao,/; G),

Z E 8G,

z E 8G,

I z - ~ I :( 20.

I z - ~ 1= Ao,
(2.8)

A;;:, 1.

Proof These inequalities are clear.
Thus, to estimate the subharmonic function u in the interior of G, we

should find a harmonic function that dominates u on 8G. Then, by the
maximum principle, it will also dominate u inside of G. For nice domains G,
we can write down such a function explicitly. One such class of domains is
the following.

DEFINITION 2.5. We say that the complement of G is fat if there exist
constants C;;:' 1, 00 > 0 such that for all ~ E 8D and all 0 < 0 :( 00 , the
ball {z : I z - ~ I :( o} contains a point" ¢ G- such that I z - ~' I ;;:, (l/C)o
for all z E G-.

For example, if G has a smooth boundary, the condition of Definition
2.5 holds. Note also that if the complement of G is fat and 0 < 0 :( 00 ,

~ E 8G, and ~' ¢ G- is a point related to ~ as above, then the function

h(z) = h(z, 0, ~) = log I C(Z - % I

has the following properties.

(2.9)

h(z) is harmonic in a neighborhood of G-;

h(z) ;;:, 0 if z E G-;

h(z) ;;:, log(i z - ~ I/o) + log(Cf2) if z E 8G and A = I z - ~ I/o ;;:, 2.

All the assertions are clear, except for the last one. But, if z E G- and
I z - ~ I ;;:, 20, then I z - " I ;;:, ! I z ~ ~ I, so

--,. (Clz-~I)h(z) ~. log 20 .

With this function h, we can now prove the following Theorem.
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THEOREM 2.6. Suppose the complement ofGisfat, in the sense ofDefinition
2.5, and that tP is a continuous, increasing subadditive function. Then for all
IE A(G-), and 0 < 8 :::;;; 80 ,

w(8,!; G) :::;;; tP(8) => w(8,!; G) :::;;; (2 + 8c) tP(8).

Proof From Lemma 2.4, we have for' E aG, u(z) = log Ifez) - fm! :::;;;
log tP(28) if Z E aG and I Z - , I < 28, while u(z) :::;;; log tP(>..o) if z E aG and
I z - , I = .\0, .\ ~ 2. However, because tP is subadditive, tP(28) :::;;; 2tP(0),
and, in general, for .\ > I, we have tP(.\o) :::;;; 2>"tP(8). In particular, if h is the
function of (2.9), then for Z E aG and I z - , I :::;;; 28, we have

u(z) :::;;; log ep(o) + log 2 :::;;; h(z) + log tP(o) + log 2

while if I z - , I ~ 28 and z E aG,

u(z) :::;;; h(z) + log 2(1 z - , I/o) + log tP(o)

:::;;; h(z) + log tP(o) + log 2 - log(Cj2)

:::;;; h(z) + log ep(o) + log 4.

Thus, in any case,

u(Z) :::;;; h(z) + log ep(o) + log 4, zEaG.

If we replace u by 11 = max(u, log tP(o) + log 4), then the same inequality
still holds, and i1 is a bounded continuous function on G- with i1 subharmonic
on G. Since h(z) + log tP(o) + log 4 is harmonic and dominates 11 on aG,
it also dominates it inside G. Thus, if z E G and I z - , I :::;;; 0, then

u(z) :::;;; h(z) + log tP(o) + log 4 = 10g(C I z - , I/o) + log tP(o) + log 4

:::;;; log 2C + log tP(o) + log 4 = log 8CtP(0).

Hence, Ifez) - Iml :::;;; 8Cep(0). Combining this estimate with that of
Lemma 2.3, and using the fact that tP(28) :::;;; 2tP(8) again, we have

w(o,!; G) :::;;; (2 + 8C) tP(8).

Finally, we give a theorem for arbitrary simply connected regions. For
this we will use an estimate of A. Beurling [1, p. 55J for harmonic measure.

Let G be a simply connected domain in the plane, let y C 8G, and let
z E G. Let r(z, G) = distance from z to oG, and r(z, y) = distance from z
to y. Further, let w(z, y, G) denote the harmonic measure of y for the domain
G with respect to the point z.
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THEOREM (Beuding, [1, p. 55]).

4 [ r(z, G) ]1/2
w(z, y, G) ~ - arc tan ( ) .

7T r z, y
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THEOREM 2.7. Let G be simply connected and ep a continuous increasing
subadditive function for 0 ;;, 0 with ep(o) ;;, O. Then for f E A(G-),

w(8, f) ~ ep(S) ~ w(S, f) ~ Cep(S)

where C is an absolute constant, independent of G.

Proof Exactly as in the proof of Theorem 2.6, we must estimate the
function u(z) = log Ifez) - fml for fixed' E 8G. Let h(z) be the harmonic
function on G such that on 8G,

h(f) = log ep(2o), t E 8G, I t - , I ~ 2S

h(g) = log ep(AS), t E 8G, I t - , I ;;, 2S, A = I t - , 110.

That is, h(z) = faG h(t) w(z, dt; G). If z E G and I z - , I ~ S, then

h(z) = ~ f h(g) w(z, dg; G)
n=l En

where E1 = {t E 8G : It - , I ~ 2S} and for n ;;, 2, En = {t E 8G : 2nS <
I g- , I ~ 2n+1S}. On the set E1 , h(f) ~ log ep(2S) ~ log 2ep(S) while on
En , h(g) ~ log ep(AS) ~ log 2Aep(0) = log ep(S) + log 2 + log I g - 'IS I ~
log 2ep(S) + (n + 1). Thus, h(z) ~ log 2ep(8) + L;;:2 (n + 1) w(z, En ; G).
But, I z - , I ~ S implies r(z, G) ~ Sand r(z, En) ;;, 2nS - I z - t I ;;, 2n - 1S.
Thus, by Beuding's theorem, w(z, En ; G) ~ (4/7T) tan-1[2-11 /2)(n-1l]. Since
tan-1 x ~ x, x ;;, 0, we have

4
w(z, En ; G) ~ - 2-(n-ll/2,

7T
so if

4 +00
A = - L (n + 1) 2-(n-1/2),

7T n~2

we have

h(z) ~ A + log 2ep(S), z E G, I z - , I ~ O. (2.10)

The remainder of the proof is exactly the same as in the proof of Theorem
2.6. The constant Cis 2 + 2eA •
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3. MERGELYAN SETS

DEFINITION 3.1. Let F be a subset of the open unit disk D. Then U(F)
is the space of all functions that are analytic in D and uniformly continuous
on F, in the topology of uniform convergence on every set of the form
K U F, as K ranges over the compact subsets of D.

Remark. By a standard device, U(F) is seen to be a metric space with
metric

00 ilf - g ilKnu F
p(J; g) = I Y" ---c-----c-:-,,-------,-,-

n~l I + Ilf - g IIKnuF '

where K n is a sequence of compact subsets of D such that every compact
set in D is contained in a finite union of the K n , and

[[fliE = sup{j f(z)1 : z E E}.

DEFINITION 3.2. A relatively closed subset F ofD is said to be a Mergelyan
set if the polynomials are dense in U(F).

PROPOSITION 3.3. IfF is a Mergelyan set and iff: D -- D is a one-to-one
conformal map, then f(F) is a Mergelyan set.

Proof The proof is an easy consequence of the fact that f must be
analytic on the closure of D, and we omit it.

DEFINITION 3.4. A set F in D is said to be radial if there is a sequence
rn -- 1- such that Fn n DC F wherefn = {z/rn : z EF}.

PROPOSITION 3.5. Every radial set is a Mergelyan set.

The proof uses the familiar mapping f --ft·, where fr(z) = f(rz), and
we omit it.

DEFINITION 3.6. The polynomial hull of G, H 1'(G), is the set of points z
for which

[p(z)1 :(; sup{i p(w)1 : WE G}

for all polynomials p.

DEFINITION 3.7. The uniformly continuous analytic hull of G C D with
respect to F, HU,F(G), is the set of all points ZED for which

I f(z)j :(; sup{[ few)! : WE G}
for aBfE U(F).
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PROPOSITION 3.8. If F is a Mergelyan set, then
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for every compact subset K of D.

Proof It is clear that HuAG) C H,p(G) n D for all subsets G of D. In
the other direction, take Z E H ,p(K U F) n D, and let f E U(F). Let P n be a
sequence of polynomials which converge to fin U(F). Then

I j(z)1 = lim I P iz)1 :( lim sup {I Pn(w)j: WE K U F}
11400 n-HYJ

= sup{lj(w)l: WE K U F}.

and the result follows.
Stray [8] has recently established the converse to this proposition.

PROPOSITION 3.9. Let F = {zn} be a Blaschke sequence (i.e.,
L 1 - I Zn I < + 00, I Zn I < 1» such that every point of aD is a limit point
of the Zn • Then F is not a Mergelyan set.

Proof It is clear that the Blaschke product over the Zn cannot be
approximated in U(F) by polynomials.

DEFINITION 3.10. A bullseye is a closed subset of D that contains circles
{z : I Z I = r} for values of r arbitrarily close to 1.

PROPOSITION 3.11. Every bullseye is a Merge/yan set.

Proof By Theorem 1.1, iffE U(F) then f must be uniformly continuous
on I z I < 1 and is, consequently, the uniform limit on D of a sequence
of polynomials.

THEOREM 3.12. There exist two Merge/yan sets whose intersection is not
a Merge/yan set.

Proof. It is clear that there are two bullseyes whose intersection is a
Blaschke sequence that is dense on aD. Propositions 3.9 and 3.11 now apply.

PROPOSITION 3.13. Let J be a simple closed Jordan curve in 15 that intersects
aD only at z = 1, and let J' = J\{l}. Then Hu,J'(J') = J'.

Proof We need only prove that if z rt J' then there is an f E U(J') with
I j(z)1 > 1 but Ij(w)1 :( 1 for W E J'. Without loss of generality, we will take
z = O. Let ep(z) = (1 + z)/(1 - z) and let A = ep(J'). By Arakelian's
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theorem [2, Theorem 3.1, p. 37], there exists an entire function A such that
I A(I)1 > 1 but / A(W)1~ 1 for WE A, and such that A(W) ---+ 0 as W ---+ 00,

WE A. (Just take a continuous function tX on A U {I} that is large at 1 and
small on A, tending to 0 at 00, and approximate it within £((1 + I z I) on
A U {I}, where £ = 1(10, say.) Let fez) = A(ep(z» to complete the proof.

THEOREM 3.14. There exist two Merge/yan sets E and Fin D whose union
is not a Merge/yan set.

Proof Take E to be the radius from 0 to 1 and let F be a short circular
arc that touches 8D at 1 at right angles to 8D. By Propositions 3.3 and 3.5
both E and Fare Mergelyan sets. But let K be the straight line segment that
joins the endpoints of E and F that lie in D, and let B = E u F. Then B u K
is a set J' of the form just discussed and so D n Hp(B U K) =!=' HU,B(B UK).
Indeed, the left-hand side is the inside of J' while the right-hand side is just
the curve J'. By Proposition 3.13, E U F is not a Mergelyan set, and the
result is proved.

4. EXAMPLES

We give some examples which indicate that, in some sense, Theorem 1.1 is
best possible. It is well-known thatTheorem 1.1 is false for harmonic functions.
A simple example is given by the harmonic function on / z I < I with the
boundary function u(eit) = I eit - 1 I "" I t 1for small t. Clearly, w(S, u) ~ cS.
But, if S = I - r, then the Poisson kernel Per, t) satisfies Per, t) ~ (S(t 2)

for I t I ~ S, so

ITT u(eit) I
u(r) ~ cD 8 -t-2- dt ~ c'D 10g"8'

Thus, weD, u) ~ / u(r) - u(I)1 ~ c'S 10g(I(S). This example shows that the
logarithmic factor in Theorem 1.1' is best possible.

An explicit example which shows that C > I in Theorem 1.1 is the function
F which conformally maps the unit circle onto the region interior to the
two circles which pass through +1, -1, and ±«2)1/2 - l)i, respectively.
Normalize F so that F(O) = 0, F(1) = 1. Then an explicit formula for F is

F(z) = I - (1 - Z2)1/2 •

Z

It can be verified that w(l, F) = IF(eiTT
/
3) - F(1)/ = 0.9332... < 1 =

I F(1) - F(O)1~ w(l, F). We will not give the details of this calculation here,
however, since there are slightly less explicit examples which are easier to
check.
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A very simple function which is almost an example is the function

g(z) = ZI/4 + ZI/3

35

in the half-plane H = {z : Re z > O}. Unfortunately, g is not bounded, so
it is not really an example. However, it is easy to modify g to obtain such an
example. We first give the main properties of g.

LEMMA 4.1. Let 0 < a < b :(; 1/3 and/or Re z ~ 0 let

w(8) = £7'1(8, g) = sup{[ g(iYl) - g(iY2)!: [ Yl - Y2 I :(; 8}

w(8) = w(8, g) = sup{[ g(ZI) - g(Z2)[: I ZI - Z2 I :(; 8, Re Zi ~ O}.

Then
w(8) = Ig(i8)j < g(8) :(; w(8), 8> O.

Proof Fix t > 0 and define if;(y) = I g(iy) - g(i(y - t))[2. We will show
that

sup{if;(y) : -IX) < Y < +IX)} = if;(t) = if;(0) = Ig(it)12 (4.1)

and that
max{1 g(it)[ : 0 :(; t :(; 8} = [g(i8)[.

These two facts imply the lemma. We first prove (4.2). Write

(4.2)

so that

and

g(iy) = u(y) + iv(y)

aTr bTr
u(y) = ya cos 2 + yb cos 2

( ) . OTr b' bTr
V Y = ya sm 2 + y sm 2 y~O

u(y) = u(-y), v(y) = -v(y).

Clearly, u, v are non-negative increasing functions for y ~ 0 and therefore
so is [g(iy)l, which proves (4.2).

To prove (4.1), consider the function q:>(y) = arg g(iy). Now tan q:>(y) =
v(y)/u(y) = (tan(aTr/2)){(1 + Ay")/(l + fLY")} where c = b - a > 0,

A = sin(bTr/2) > 1
sin(aTr/2)

and I/. = cos(bTr/2) < 1
r cos(aTr/2) .
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It is then easy to check that y f-+ (1 + AyC)/(1 + fLYc) is increasing for y ;?: O.
In particular, tan cp(y) ~ limy _ ro tan cp(y) = tan(b1T/2). Thus, 0 ~ cp(y) ~
b1T/2 ~ 1T/6 for y ;?: O.

Now write g(it) = poei"'o. Since Ig(iy)] and argg(iy) are increasing for
y ;?: 0, and since g(iy) = g(-;y), it follows that g(iy) belongs to the sector

S = {w = pei
'" : 0 ~ p ~ Po' cp ~ CPo}

whenever Iy I ~ t. However, since CPo ~ 1T/6, it is clear that the diameter
of the sector is

Po = I poei"'o - 0 I = Ig(it) - g(O)! = Ig(it)l.

Therefore,
max{f(y) : 0 ~ y ~ t} = I g(it)1 2. (4.3)

Next consider y ;?: t. A short calculation shows l/J(y) = [ha(y)]2 +
[hb(y)]2 + 2ha(y) hb(y) cos(b - a)1T/2), y ;?: t, where ha(y) = ya - (y - t)a.
The function if; is thus the sum of three decreasing functions so

sup{if;(y):y;?: t} = if;(t) = I g(it)1 2. (4.4)

Eq. (4.1) is a consequence of (4.3) and (4.4). This completes the proof.

Remark. The same argument will show that g(z) = za + Zb with
o < a < l, b ~ 1 has w(o) = g(io) for small 8 > O.

As a consequence of the lemma, we can also see that w(8, g) r""-' w(8, g)
as 0 ---+ O. In fact, we have, with

M(8) = I g(8) - g(O) I = Ig(8) I
w(o, g) g(io)

that
(1 + t)2

(1 + t)2 - 2t7J

where t = 8b
-

a and 7J = 1 - coss(b - a)1T/2) > O. Thus, as 8 ---+ 0, we
have that

M(8) = 1 + 7J ob- a + O(82(b-a». (4.5)

We want to modify g to obtain an example in the unit disc. The idea is to
multiply g by R/(z + R) where R is a large positive number. This new
function is then bounded in Re z ;?: O. If we then restrict it to a large disk
I z - N I < N in the right half-plane, it provides an example on this large
disk that can then be transferred to the unit disk. We will do a little more
work and obtain an example in the unit disk D = {! z I < I} with

I, w(8,!; D) 1
1m sup -(<;, f' D) > .

6--+0 W 0, ,
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(4.6)

LEMMA 4.2. Let D = {z : I z 1 < I}. Then there exist numbers SI > 0,
A > 1, c > 0 such that: for every S, 0 < S :::;; SI, there is a function k = ka
analytic for I z I < 1, continuous for 1z I :::;; 1, and such that

(1) 1 k(l - S) - k(1)1 ~ Aw(S, k; D),

(2) Ik(z) I :::;; 1, and

(3) w(o, k; D) ~ c.

Proof For R ~ 1, set h(z) = (RI(z + R)) g(z) where g is as in Lemma 4.1.
Then

R(Z2 - ZI) R (
h(ZI) - h(Z2) = (ZI + R)(Z2 + R) g(ZI) + Z2 + R [g ZI) - g(Z2)]'

Therefore, if A(R) = max{[ g(zl)/(zl + R)I : Re ZI ~ O} we have w(S, h) :::;;
A(R) S + w(S, g) and then

I h(S) - h(O) I :> (RI(o + R)) g(S)
w(S, h) y- w(o, g) + A(R)o

1 g(o)
- 1 -+- olR 1 gUo) I + A(R)S'

Now as R ---->- 00, we have A(R) ---->- 0 so we can fix R = Ro :::;; 1 so large that
A(R) :::;; 1. Then, for small 0 > 0, we have I g(S)1 "'-' Sa, I gUo)1 "'-' oa, so the
right-hand side of (4.6) is equal to

g(S)
[gUo)! + O(S) as S ---->- o.

Combined with (4.5), this yields

as 0---->-0.

Thus, there is a constant So > 0 such that

(4.7)0<0 < So'
I h(S) - h(O) [ :> 1 + 1JOb- a

w(o, h) y- 2

For N ~ 1 and I ~ I :::;; 1, let z = N(1 - nand kW = kG, N) = h(z).
We claim that for large N, the functions k a = k( , N), where 0 = oolN,
essentially satisfy the conditions of the lemma. For, since h(z) ---->- 0 as I z 1---->-00,
it follows that the modulus of continuity of the restriction of h to the large
circles I z - N I = N tends to the modulus of continuity of the restriction of
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h to the imaginary axis. Thus, for every T > 0, there is a number No ;?; 1
so large that

w(8oIN, k( , N); D) ~ (1 + T) w(8o , h),

and
w(8oIN, k( , N); D) ;?; (1 - T) w(80 , h).

But then

Ik(1 - 801N, N) - k(l, N)I :> Ih(8o)I :> 1 + ("112) 8~-a

w(8oIN, k( , N); D) ;/"" (1 + T) w(80 ,h) ;/"" 1 + T

If T is small, say T < t TJ8~-a, then A = [1 + (TJI2)8~-a]f(1 + T) > 1 and (1)
of the lemma holds with 81 = 8olNo , 8 = 801N, and ka = k( , 8oIN). Since
w(8oIN, k( , N); D) ;?; (1 - T) w(8o , h), the condition (3) holds. Condition
(2) may not hold, but since h is bounded we can divide each of the k( , N)
by sup Ih(z)I to make it hold. This will not destroy (1) or (3). This completes
the proof of the lemma,

PROPOSITION 4.3. There exists a function F analytic for I z I < 1 and
continuous for I z I ~ 1 such that, with D = {I z I < I},

I
, I F(1 - 8) - F(1)1 1
1m sup -(8 F'D) >.

8-ioO w"

Proof The function F may be written explicitly as follows, For suitable
sequences of positive numbers Ej, Dj ,

F(z) = I Ejklz)
j~1

where k j is a function as in Lemma 4.2 associated to the number 8j • To
carry out the construction, choose "I > 0 so small that (1 + 2"1)/(1 - 2"1) < A,
where A is as in Lemma 4.2. Set E1 = 1, 01 = the number 81 of Lemma 4.2,
and k1 a function satisfying the conditions (1)-(3) of Lemma 4.2. Then
inductively choose positive numbers En' Dn , and functions kn so that

""I 2Ej < TJE nw(8n , k n)
j~n+1

n-l

I EjW(On, k j ) < TJE nw(8n , k n)·
j~l

(4.8)

(4.9)

It is possible to do this since w(8n , kn) ;?; c > 0 while w(8, kj ) -+ 0 as 8 -+ 0
for j ~ n. We can also assume Ej ~ 2-;.
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00

F(z) = L: Ejkj(z)
j=1
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we have that F(l - on) - F(I) is about equal to En[kn(l - on) - kn(l)] and
w(on, F) is about equal to EnW(On , k n). For

n-l

w(on ,F) ~ L EjW(On, k j ) + EnW(On , k n) + L 2Ej
j=l j=n+l

~ (l + 27]) EnW(On , k n)

by (4.8) and (4.9). Similarly, we have

Therefore,

.\>1.

This completes the proof.

REFERENCES

1. A. BEURLING, "Etudes sur un Probleme de Majoration," Almquist and Wiksell, Upsala,
1933.

2. P. L. DUREN, "Theory of HP Spaces," Academic Press, New York, 1970.
3. W. H. J. FUCHS, Theorie de I'approximation des fonctions d'une variable complexe,

"Seminaire de Mathematiques Superieures, Etc 1967," Les Presses de l'Universitc de
Montreal, Montreal, 1968.

4. G. H. HARDY AND J. E. LITTLEWOOD, Some properties of fractional integrals. II,
Math. Zeit. 34 (1931), 403-439.

5. L. A. RUBEL, A. L. SHIELDS, AND B. A. TAYLOR, Mergelyan sets and the modulus of
continuity, in "Approximation Theory" (G. G. Lorentz, Ed.), Academic Press, New
York, 1973.

6. W. RUDIN, "Function Theory in Polydiscs," Benjamin, New York, 1969.
7. W. E. SEWELL, "Degree of Approximation by Polynomials in the Complex Domain,"

Princeton University Press, Princeton, 1942.
8. A. STRAY, "Characterization of Mergelyan Sets," Preprint.
9. P. M. TAMRAZOV, Contour and solid structure properties of holomorphic functions of

a complex variable, Russ. Math. Surveys 28 (1973), 141-173.
10. P. M. TAMRAZOV, Solid inverse theorems of polynomial approximation for regular

compacta in the complex plane, Sov. Math. Dokl. 12 (1971), 855-858.



40 RUBEL, SHIELDS AND TAYLOR

11. P. M. TAMRAZOY, Constructive and structural properties of functions on compacta of
the complex plane, in "All-Union Conference on the Theory of Functions of a Complex
Variable, Khar'koy, 1971," Abstracts of Papers, pp.206-208.

12. P. M. TAMRAZOY, Boundary and solid properties of holomorphic functions in a complex
domain, Dokl. Acad. Nauk. 204 (1972),565-568.

13. E. C. TITCHMARSH, "The Theory of Functions," Oxford University Press, New York,
1949.

14. A. ZYGMUND, "Trigonometric Series," Vol. I, Cambridge University Press, New York,
1959.


